
Introduction to Ubit Semantic Computing
Shengyuan Wu

Independent researcher, Ubit inventor, retired professor, Shandong University, Jinan, China

Abstract - Compute science faces two basic and hardly solved problem;
the first is semantic ambiguity; the second is the semantics only
understandable to human, not understandable to machine. The
difficulties stem from unstructured bits. Based on a new theory, called
as Ubit theory, this paper introduces a new generation of semantic
computing, called as Ubit Semantic Computing (USC), which can
solve the problems successfully. This paper first introduces Ubit theory
briefly, then explains how to eliminate semantic ambiguities of natural
language, video, audio, and image; and how to make them
understandable to both machine and human; then introduces how to
make semantics of program and web understandable to both machine
and human; making semantic translating tools no needed any more,
such as compiler, interpreter, semantic analysis, web parser, domain
name resolution; then introduces an integrated interface of USC, by
which, anyone can access anything, from anywhere, and in anytime;
at last presents an architecture of USC.

Keywords Ubit; Ucode; semantic; understandable; content;
intent

1. INTRODUCTION

J. Glenn Brookshear says: “Computer scientists dream that
the source program is not forced translated to machine language;
and machine could perform algorithm discovery process rather
than just obeyed execution. [1]”

Tim Berners-Lee points out: "The Web was designed as an
information space; with the goal that it should be useful not only
for human-human communication, but also that machines would
be able to participate and help.”

“One of the major obstacles to this has been the fact that most
information on the Web is designed for human consumption,”
[2]

Therefore, semantic web had to be first expressed in a
“machine processable form" ; then transform the machine
processable form into machine executable form [2]; which is still
not machine understandable form.

The aim of semantic computing is user’s intents can match
author’s intents precisely and efficiently.

The semantic computing definition made by IEEE says
“Semantic computing concerns with connecting the (often
vaguely formulated) intentions of humans with computational
content [3].”

Why the dream of Computer scientists can’t become true?
Why is semantics represented in ambiguous form? Why the
semantics is not represented by machine and human
understandable form?

This stems from bit; stems from codes.

Basic on Ubit theory [4], this paper divides bit into Vbit and
Ubit; divides code into Vcode and Ucode; and divides semantic

computing into Vbit Semantic Computing (VSC) and Ubit
Semantic Computing (USC); the basic idea of USC is that the
semantics of contents is expressed in the format understandable
to both humans and machines.

All existed semantic computing belongs to VSC.

Authors create contents according to author’s intents, users
retrieve contents according to user’s intents; intents need
containers; contents are intents inside containers; the containers
are codes. Contents are the set of all codes.

The intent container of VSC is Vcode; the intent container of
USC is Ucode.

Vcode is unstructured; the number of compatible and
consistent Vcodes is limited. VSC can’t represent unlimited
intents by limited Vcode, Vcode and intent is not mapped one to
one; therefore, ambiguities are inevitable.

The length of compatible and consistent Vcode is limited;
therefore, no enough room contains machine understandable
semantics.

 In contrast, Ucode is structured; the number of compatible
and consistent Ucodes is unlimited. Unlimited Ucodes can
represent unlimited intents.

Ucode and intent is mapped one to one; therefore,
ambiguities are eliminated.

The length of compatible and consistent Ucodes is unlimited,
and Ucode is structured. Ucode can contain any machine
understandable semantics; and also can associate semantics with
machine and human. That is Ucode builds a bridge between
machine understandable semantics and human understandable
semantics.

This paper introduces Ubit theory briefly, then explains how
to eliminate semantic ambiguities of natural language, video,
audio, and image; and how to make them understandable to both
machine and human by experiment examples; then introduces
how to make semantics of program and web understandable to
both machine and human; then introduces an integrated interface
of USC, by the interface, anyone can access anything, from
anywhere, and in anytime; at last presents an architecture of
USC.

2. A BRIF INTRODUCTION TO UBIT THEORY

2.1 Vbit, Vcode
Bit is the basic unit of information capacity; a bit can have

the value of either 1 or 0 only. Since digital computer was born,
bit has only acted as value; this kind bit is called as Vbit. Code
only consisted of Vbits is called as Vcode. All the existed codes
are Vcodes.

Int'l Conf. Semantic Web and Web Services | SWWS'14 | 55

Because Vcodes are not structured, Vcodes in a sequence
usually distinguished by code length, different length of Vcodes
can hardly be distinguished in one Vcode sequence; generally,
only Vcodes in one code set can be mixed in a Vcode sequence.

2.2 Ubit, Ucode
Ubit is not acted as value; Ubit is used to represent data

structure, making data structured and distinguishable from the
most bottoms. [4]

Ubit can be used in dividing a bit sequence into bit groups.

Fig. 1 (a) contains a bit sequence, which is divided into 5 bit
groups: 10, 110, 0, 0, 11110.

The bit group above is characterized as:

If a bit group is one bit long, the bit must be 0, for example
the third group “0” and fourth group 0”.

If a bit group is more than one bit long, the right most bit
must be 0, the others must be 1; for example: 10, 110, 1110.

The left bit neighbor of a group can’t be 1, but the right bit
neighbor of a group can be 1 or 0,

There is one and only one bit 0 in one bit group.

A bit sequence can be distinguished into groups by one Ubit
rule; there are ten Ubit rules; the most useful is Right 0 Ubit rule.

2.3 Right 0 Ubit rule
Right 0 Ubit rule: Scan a binary 1 and 0 sequence from left

to right, if the first bit is 1, continue scanning until a bit 0 is met,
then from the first bit 1 to the bit 0 is distinguished as a group; if
the first bit is 0, then the bit 0 is distinguished as a group;
continue scanning and distinguishing until the end of the
sequence, if the last bit of the sequence is not 0, then the last
group is an incomplete group.

Figure 1. Grouping by Right 0 Ubit rule (a) distinguishing bit sequence into
bit groups (b) distinguishing byte sequence into byte groups

Example 1, distinguish the bit sequence in Fig. 1 (a) into bit
groups.

Scan the binary 1 and 0 sequence in Fig 1 (a) from left to
right,

The 1st bit is 1, continue scanning, the 2nd bit is 0, therefore,
“10” is distinguished as a group;

Continue scanning, the 3rd bit is 1, continue scanning, the 4th

bit is 1, continue scanning, the 5th bit is 0, therefore, “110” is
distinguished as a group;

Continue scanning, the 6th bit is 0; then, the bit 0 is
distinguished as a group.

Continue scanning until the end of the bit sequence; 5 groups
are divided by Right 0 Ubit rule.

Here, bit 0 or 1 is used in distinguishing bits into groups, not
acted as value. This kind of bit is called as Ubit.

A complete bit group in Figure 1(a), consisting of only Ubits;
it is an Ubit group. An Ubit group is called as Uframe.

In Fig. 1(b), each Ubit in (a) is copied to the leftmost bit of
each byte respectively; then, the byte sequence is divided into 5
byte groups by the Right 0 Ubit rule, or by Uframe. The
distinguishing procedure is the same as example 1; the
difference is each Ubit in the leftmost bit of each byte; therefore,
the distinguishing is by scanning each Ubit in the leftmost bit of
each byte.

Each of the 5 byte groups consists of Ubit and Vbit, each
byte group is called as Ucode; the leftmost bit of each byte is
Ubit. The length of Ucode in the Ucode sequence is different.

Example 2 distinguish byte sequence into Ucode,

Fig. 2 (a) is a byte sequence, each byte is represented in two
hex numbers, the leftmost bit of each byte is Ubit; if the first hex
number of a byte is greater than 7, then the Ubit of the byte is 1,
else the Ubit of the byte is 0; (here, the old display system takes
Ubit as value) for example, the first underline three bytes are
displayed as {F2 A0 2D}, the Ubits of three bytes are {1,1,0},
respectively.

The Ubits of the 16 bytes of the first row are
1101101101101110

Then, the 16 byte sequence is distinguished into 4 Ucode by
Right 0 Ubit rule.

The underline Ucodes in Fig. 2 (a) are 3, 3, 3, 4, 2, 6 bytes
and 1 byte long, respectively. The Ubits of the underline Ucodes
are {1,1,0},{1,1,0},{1,1,0}, {1,1,1,0}, {1,0}, {1,1,1, 1,1, 0},
{ 0 }, respectively.

It is clear that variable length Ucodes are mixed in a code
sequence, compatible with one another.

An Ucode consists of sections, here, the section is byte; the
section can be any long, but the shortest section is 2 bits.

Here, Ubit is assigned in the leftmost bit; it can be positioned
in any bit of the section as needed.

A section sequence can be distinguished into Ucodes by Ubit
rule.

Thus, bit is divided into Vbit and Ubit.

Vbit is used to represent data value; Ubit is used to represent
data structure, making data structured and distinguishable from
the most bottoms.

Code is divided into Vcode and Ucode.

Vcode only consists of Vbit, unstructured and
undistinguishable. All existing codes belong to Vcodes.

Ucode consists of Vbit and Ubit; the Ubits in an Ucode
represent the structure of the Ucode, making it structured and
distinguishable; the Vbits in an Ucode represent the value of the

56 Int'l Conf. Semantic Web and Web Services | SWWS'14 |

Ucode. Variable length Ucodes are compatible with one another;
unlimited amount codes are available; the length of Ucode can
be very short, or very long, it can contain any kind of semantics,
and any amount of semantics; it can also associate with
semantics; suitable as contents containers; Ucode acts as an
bridge between human and machine understandable semantics.

Ubit theory is a fundamental theory of computer science, it
studies how represent data structured from the bit level, how
make semantics of contents expressed in the format
understandable to both human and machine; in another hand,
Ubit theory also studies how to make semantics of private
contents not understandable to unauthentic persons and
machines.

3 HUMAN AND MACHINE UNDERSTANDABLE SEMANTICS

3.1 Outline of human and machine understandable
semantics

Fig. 2 (a) is an Ucode sequence understandable to machine,
containing 1, 2, 3, 4, or 6 byte length of Ucodes.

Fig. 2 (b) is a notation group sequence, the human
understandable semantics. Each notation group is an object, each
object is associated with one and only one Ucode in Fig. 2 (a),
The underlined notation groups are audio object, video object,
image object, two-Chinese character word object, one-Chinese
character word object, three-Chinese character word object, and
one English letter object respectively.

3.2 Human and machine understandable semantics of
audio object, video object and image object

3.2.1 Human understandable semantics of audio, video
or image object associated by Ucode

In Fig. 2 (b), the symbol pair of , and
represents audio, video and image object respectively,

the character string inside each symbol pair of ,
and is the name of the object. These notations

make the objects understandable to human. For example, the
first object is an audio object: , the second is video
object: 1 , the third object is video object:
10 (video clip of cat 10) , and the fourth is an image object:

. As shown in Table 1; the notation of each video
clip of cat and mouse is associated by its related Ucode.

3.2.2 Machine understandable what kind of object
semantics embedded in Ucode

In Fig. 2 (a), each audio, video or image object is coded in a
3 byte Ucode; the first bit of each byte is Ubit, the others are Vbit.
Machine can distinguish each Ucode by Ubit rules [4]. The type
semantics of the audio, video and image object is contained in
the first byte of the related Ucode, that is the Ucode is divided
into two parts, the first byte is for object type; the Ucode is
structured. For example, the first underlined Ucode {F2 A0 2D}
is an audio object, the second underlined Ucode {F3 A0 6A} is
a video object; the third underlined Ucode {F1 A2 7C} is an
image object; the first byte of the Ucode of audio, video and
image object is F1, F2, F3, respectively. Because the leftmost
bit is an Ubit, the real value of the first byte is 0x71, 0x72 and
0x73; that means the real type attribution of audio, video and
image is 0x71, 0x72 and 0x73.

Figure 2. Human and machine understandable semantic with mixed objects:
audio object, video object, image object, one-Chinese character word object,
two-Chinese character word object, three-Chinese character word object, and
English letter object. (a) Ucode sequence; (b) Notation group sequence

The maximum value of the first byte of the Ucode is 127;
that means it can hold 127 types of objects for this three byte
Ucode.

The ASCHII codes in Fig. 2 are no change; they can be
distinguished by Right 0 Ubit rule; therefore, ASCHII code is
Ucode. It is easy to make Vcode be Ucode by adjusting a bit here;
for example, the Chinese GB2312 in Fig. 2; only the leftmost bit
of the last byte of each word is changed from 1 to 0.

It is easy to judge what is Ucode and Vcode, if the codes in
a sequence are distinguished by Ubit rule; then, they are Ucodes.

Ucode is hierarchically structured; however, Vcode is not
structured. For example:

GB2312 is 2 byte code set in Chinese; JISX 0208 is 2 byte
code set in Japan; and KSC 5601 is 2 byte code set in Korea.
These are local code sets, unstructured, conflict one another;
therefore, they can’t be distinguished in a mixed code string.

Unicode is universal or global code set, the relation between
global code set and local code sets should be in hierarchical form;
however, it’s not. Unicode is only a recoded code set; UTF16
contains 65,536 codes, including most of the characters needed
for writing system in the world. But, different kinds of codes are
mixed in Unicode, not structured.

The codes of GB2312, JISX 0208, KSC 5601 and Unicode
can’t be put into one singular string, because no way to
distinguish what kind of codes.

However, GB2312, JISX 0208, KSC 5601 or Unicode can
be easily represented by Ucode, for example, here double byte
Ucode is used for GB2312 as default; JISX 0208 and KSC 5601
can be represented by two type of object of the Ucode in Fig.
2(a); Unicode can be divided into 4 classes, each can be
represented by one type of object of the Ucode. Then all code
sets are hierarchically structured, each set can be distinguished
by its type attribution [5]. Local code sets, various code sets in
various locations are compatible one another, this is called as
space consistent.

Here, the object type attribution is embedded in Ucode, not
represented in notation form, understandable to machine.

3.2.3 Machine understandable object addressing
semantics associated by Ucode

Int'l Conf. Semantic Web and Web Services | SWWS'14 | 57

In order to access an object, machine must need to know the
address in storage space. There are two ways: one is embedded
the physical address in Ucode, another is associating the address
by Ucode.

Usually, an object address is represented by directory path as
shown in table 1; this is a notation form, only understandable to
human. Therefore, the notation form address must be translated
to machine.

Table 1 (a) is Ucode sequence for clips of video “cat and
mouse”; (b) Ucode associated with human’s language for clips
of video cat and mouse: the notation form; (c) Ucode associated
with physical address for clips of video “cat and mouse”.

TABLE I. THE ASSOCIATION BETWEEN UCODE AND SEMANTICS

But, after inputting, the two sentences look the same; there

3.3 Human and machine understandable semantics of
natural language

The most difficult language might be Chinese; so we take
Chinese as an example.

3.3.1 Chinese word segmentation problem
Word segmentation is the problem of dividing a string of

written language into its component words. In English, the space
is a good approximation of a word divider (word delimiter);
however, in Chinese character string, there are no spaces as word
delimiter; therefore, word segmentation becomes the most
difficult problem in Chinese language processing.

In Fig. 2 (b), the two sentences are segmented different; the
meaning is totally different.

The first sentence is segmented by author as:

The meaning is: Ping pong/ rackets/sell/finished/already.

The second sentence is segmented by author as:

The meaning is: Ping pong balls/auction/finished/already.

However, if no word delimiters, it’s very difficult to know
the author’s real intents.

The two sentences are displayed the same in Fig. 2 (b) as the
following.

The ambiguity of word segmentation is caused by many to
one mapping, multiple characters relate to one word; Ucode
eliminates this kind of ambiguity by making each word relates

to one and only one Ucode; in Fig. 2 (a), the segmentation
semantics has been represented by Ucodes, which can be
distinguished by Ubit right 0 rule; therefore, Ucode acts as word
delimiters; understandable to machine; then machine can
translate the segmentation semantics to human, for example, to
display words in different colors.

3.3.2 Chinese polyphone word ambiguous problem
In Fig. 2 (b), the first character of Chinese word

is a polyphone character with two different phonemes, and the
meaning is totally different.

The ambiguity of polyphone word is caused by one to many
mapping; one character code relates multiple phonemes and
meanings. Ucode eliminates this kind of ambiguity by making
multiple Ucodes, each is only related to one phoneme and one
meaning. Therefore, the right semantics is distinguished by
Ucode as shown in Fig. 2.

However, it can’t do so with Vcode, because no enough
compaible Vcodes can be used.

4 HUMAN AND MACHINE UNDERSTANDABLE PROGRAM
SEMANTICS

Obviously, programming languages are notations form, only
understandable to people, not understandable to machine.
Therefore, before a program can be run, it must be translated into
machine language by compile or interpreter [6]. However,
Ucode source program is totally different.

4.1 Ucode source program
Source program usually includes two parts: instruction part

and data part. Instruction part is an Ucode sequence. Take the
following program as an example:

yCoordinate = intercept + Slope * xCoordinate

There are four variables in the program; each notation form
of them is associated by one Ucode, the human understandable
semantics, as shown in Table 2.

TABLE II. UCODE OF VARIABLE ASSOCIATES NOTATION FORM AND
ADDRESS

Ucode Ucode11 Ucode12 Ucode13 Ucode14

Notations yCoordinate intercept Slope xCoordinate
Address 0x0000 0x0004 0x0008 0x000C

There are three operators in the program; each of them is
represented by one Ucode, and the human understandable
semantics of each operator is associated by the related Ucode as
shown in Table 3.

TABLE III. UCODE OF OPERATOR ASSOCIATES NOTATION FORM

Ucode Ucode21 Ucode22 Ucode23

Operator = + *

The Ucode format of keyword, operator, and variable is
shown in Table 4, in which, 22nd bit is flag, 0 for identifier, 1 for
keywords or operators; for variables, the 16 bits, shaded grey,
coding the memory address of each variable ; if 22nd flag=1, 21st

acted as flag, 0 for keywords, 1 for operators.

Ucode F3A0601 … F3A069 F3A06A

(a) Ucode sequence for clips of video cat and mouse

Notation 1 … 9 10

(b)Ucode associated with human’s language for clips

File l address …

(c) Ucode associated physical address for clips of video cat and
mouse

58 Int'l Conf. Semantic Web and Web Services | SWWS'14 |

TABLE IV. THE UCODE FORMAT OF KEYWORD, OPERATOR, AND
VARIABLE

Assume the type of the four variables is float with 4 byte long.
Then the relative address is show in Table 2.

The Ucodes of operators are predefined as show in Table 3,
and the privilege of the operators is embedded in Ucode by
coding the Ucode according to the privilege of operators; for
example, here, the value of Ucode23 > Ucode22 > Ucode21. So the
operating rules have been embedded in Ucodes.

There is a program developing interface, just like the
interface in section VII.

As program inputting, the variable name, such as:
yCoordinate, intercept, Slope, xCoordinate, is inputted by user,
variable type semantics is also inputted by selecting the type
displayed. An Ucode is assigned to each variable, and the related
address of each variable is filled in the Ucode according to the
memory pointer, which is increased according to the type of
variable.

At beginning, the interface initializes a variable table as the
Table 2; and initialize the memory pointer=0.

As input “yCoordinate”; the interface first check if the
variable has been inside Table 2, if not, then ask user to input the
variable type; then assign an Ucode to the variable, here Ucode11,
and fill the variable type in the Ucode, and put the value of
memory pointer into the Ucode as shown in Table 2; then,
increase the memory pointer according to the variable type, here
increase 4 because the variable type is float, 4 byte long; then
put “yCoordinate” into the table 2.

The interface put Ucode11 into the source program, and
displays “yCoordinate”.

Then, input “=”, the interface put Ucode21 into the program
and display “=”.

Similarly, input other variable and operators.

At last, the content of the source program is as:

Ucode11 Ucode21 Ucode12 Ucode22 Ucode13 Ucode23 Ucode14

And displayed in notation form as:

yCoordinate = intercept + Slope * xCoordinate

This is one statement; the Ucode source file consists of a
sequence of Ucode statements, an Ucode can be selected as
deliminater among statement; for example, the feedback of
ASCHII code.

The notation form can be any character form, not limited to
English; and in the source program, user can input remarks,
notes by any language.

4.2 The executiion of Ucode source file
The machine knows the data type, the addresses of the

variables; the privilege of operators, the operating rules;
therefore, the machine knows what instructions should use, what

operation sequence, where to access the variables; i.e. how to
execute the program.

There are three executable forms: human and machine
understandable execution form, suitable for program developing
and testing; second, machine understandable execution form;
third, machine obeyed execution form.

In human and machine understandable execution form, both
human and machine understandable semantics can be displayed.

The machine scanning the Ucode source program as
following;

Ucode11 Ucode21 Ucode12 Ucode22 Ucode13 Ucode23 Ucode14

From the type attribution of Ucode, machine knows there are
three Ucodes of operator: Ucode21 Ucode22 Ucode23 (relate to = ,
+ , * ;); compare the value of Ucode21 Ucode22 Ucode23; (the
privilege of the operators by the value of their Ucodes), the
highest is: Ucode23 (for *); so the machine understands
calculating Ucode23 first; select an Ucodebuffer for storing the
middle value; and assign the memory address: x000F. Then,
calculate operation “+”, then store the value to Ucode11.
Therefore, machine can divide the cource program above into
two five Ucode form as the following:

Ucodebuffer Ucode21Ucode13 Ucode23 Ucode14 ;

Ucode11 Ucode21 Ucode12 Ucode22 Ucodebuffer .

A complier can generate two three address code after lexical,
syntax and semantic analysis [6] as following:

buffer=Slope * xCoordinate;

yCoordinate = intercept + buffer.

It is clear that each of five Ucodes form relates to one three
address code generated by a complier after lexical, syntax and
semantic analysis [6].

Assuming variable: intercept, Slope, xCoordinate have be
assigned value: 0.0, 0.5, 2.0, as show in Table 5.

Next, discuss how machine executes the source program in
human and machine understandable execution form.

Machine executes the first five Ucodes as following

Ucodebuffer Ucode21Ucode13 Ucode23 Ucode14;

Display to human as following:

buffer=Slope * xCoordinate;

TABLE V. UCODE OF VARIABLE EMBEDDED ADDRESS AND VALUE

Ucode Ucode11 Ucode12 Ucode13 Ucode14 Ucodebuffer

Address 0x0000 0x0004 0x0008 0x000C 0x000F
Initial
Value 0.0 0.5 2.0

Last value 1.0 0.0 0.5 2.0 1.0

From the type attribution of Ucode, machine knows there
are two Ucodes of operator: Ucode21, Ucode23 (relate to = , *);
compare the value of Ucode21 and Ucode23; (the privilege of the
operators relates the value of their Ucodes), the higher is:
Ucode23 (“*”); therefore, First calculate:

Int'l Conf. Semantic Web and Web Services | SWWS'14 | 59

Slope * xCoordinate;

Extract the value in the address embedded in Ucode13:
address 0x08, value: 0.5; extract the value in the address
embedded in Ucode14: address 0x000C, value: 2.0;

Do operation of Ucode23 “*”: 0.5*2.0; and store the result
to 0xF;

buffer= Slope * xCoordinate = 1.0

The second five Ucodes form is executed in the same manner.

At last, the value in the memory is shown in Table 5.

Human and machine understandable execution form is
suitable for program developing and testing;

Machine understandable execution form is similar to human
and machine understandable execution form, the difference is
that the human understandable notations are not displayed.

The advantages of the human and machine understandable
execution from and the machine understandable execution form
is as following:

Machine knows the data type, the addresses of the variables;
the privilege of operators clearly; therefore, parallelism is much
easier. The machine understands what Ucode instructions can be
calculated in parallel. The machine can efficiently schedule
Ucode instructions, according to the resources available.
Therefore, the execution speed is quickened; and the CPU could
become the real brain of the machine.

For machine obeyed execution, first extract the machine
instruction part and data part according to the machine available
resource; and generate an executable file as the existed one.

Because the three execution form does not need compiler;
they are machine independent, platform independent and
network independent. For machine obeyed execution, the
machine is just obeyed to execute an instruction sequence,
knows nothing about the program, i.e. not understand the
program.

The notations used in Ucode source program can be any
language, any notations; there nearly no any syntax requirements.
This means you can develop your program by any languages and
with great freedom.

5 HUMAN AND MACHINE UNDERSTANDABLE WEB
SEMANTICS

The aim of Berners-Lee’s Semantic Web is to make web
understandable to machine and human.

However, semantic web is only described in notation form,
the goal can’t be realized. Fortunately, Ucode can achieve the
goal easily.

Web tags can be easily represented by Ucodes, for example,
each Ucode of one type of three byte Ucodes in Fig. 2 can be
used to represented one tag; one type Ucodes can represent about
ten thousand tags.

Here, mainly discuss how to represent global address in both
human and machine understandable form.

Global address is usually called as Uniform Resource
Locator (URL). A typical URL is as the following:

http://example.org/semantic-web/Semantic Web

It’s a notation form, only understandable to human;
translating to machine is necessary; and the translation is called
as domain name resolution.

URL can be divided into two parts, remote address and local
address, as shown in Table 6.

TABLE VI. REMOTE ADDRESS AND LOCAL ADDRESS

The local address understandable to machine and human has
already discussed as shown in Table 1.

The remote address includes protocol and IP as shown in
Table 7.

TABLE VII. DIAGRAM OF REMOTE SEMANTIC ADDRESSING

Assume the remote address is expressed in 5 byte Ucode
format; the first bit of each byte is Ubit, the left 35 bits are Vbit,
three Vbits for coding protocol type; the left 32 Vbits for coding
IPv 4 as shown in Table 7. (a).

An UcodeRemote in Table 6 is associated with human
understandable notation: http://example.org; and the protocol
type and the IP address is embedded inside the Ucode. An
UcodeLocal is similarly as shown in Table 1 (b), which associates
with human understandable notation: / semantic-web/Semantic
Web, and also associates with the file address associated as
shown in Table 1 (c).

Here, “http://example.org/semantic-web/Semantic Web” is
described in Ucode form, understandable to machine and human.

The displaying of Ucode URL can be any language, any
notations; there nearly no any syntax requirements. This means
you can use any character or word to represent your name of
URL.

 As the UcodeRemote address space is not enough, the length
of Ucode can be extended; 7 byte Ucode form as shown in Table
7 (b); then, the address space is 214 times space of IPv 4. Some
years later, can be further extended to more bytes, but the old
one can continue to use. The current using, the used before, and
the shall use in future, are consistent with one another, this is
called as time consistent. Therefore, the address space is
unlimited and time consistent; domain name resolution no need
any more.

Ucoderemote Ucodelocal

http://example.org / semantic-web/Semantic Web

60 Int'l Conf. Semantic Web and Web Services | SWWS'14 |

6 SECURITY OF USC
Based on Ubit theory, the semantics of public contents can

be made easily understandable to human and machine; moreover,
the semantics of private contents can also be easily made not
understandable to unauthentic persons and machines; therefore,
the contents are much safer.

The Ucode contents are structured from the most bottoms,
the foundation is secure.

Because machine understandable the languages, no
translation needed, the vulnerabilities caused by translation are
not existed; for example, DNS attacks are stemmed from domain
name resolution; so DNS attacks no exist again.

Software becomes bigger and complicated; vulnerabilities
can hardly be avoided in developing stage, updating and
modification often needed. Adopting the human and machine
understandable execution form, the source program executes
step by step; developers can easily debug, easily update software
and easily detect and repair vulnerabilities. The inside back door
attack is also easily detected.

Computer virus infects a program file by inserting virus code
into executed code; which consists of a sequence of instructions
and data; because the machine just obeyed to execute the
instructions, has no way of knowing what is data and what is
program; therefore, virus injection is hardly prevented.

However, with the information inside Ucodes, the machine
not only knows what is data and what is program; but also knows
the data type, the addresses of the variables; the computation
rules clearly. That is the address space is numbered already,
variables in program space and data space mapped. It’s very
difficult for hacker to insert virus into Ucode program.

This is just like the following scenario: when people are
waiting on a line, the line is not clearly ordered, not know who
is in front and who is behind; then it is easy to cut in. However,
if the line is ordered and each one is numbered, each one knows
who is in front and who is behind; then it is difficult for someone
to cut in line.

Because type and size attribution of each variable is
embedded in related Ucode, as source program executing, the
machine knows the size of each buffer clearly; overflow attack
can be prevented effectively.

The existed security is only based on value operation; the
encryption strength only depends on value computing complex
[7-9].

USC security is based on both value and structure encryption;
the encryption strength not only depends on value computing
complex; and also depends on structure computing complex;
therefore, much stronger.

USC security can be further strengthened by combining with
in-out key, in-out password and in-out nonce. In-out key makes
key distribution absolutely secure; in-out password makes
password unbreakable; and in-out nonce makes replay attacks
useless [10]. Ubit theory combined with in-out key, in-out
password and in-out nonce can lay a solid foundation of
computer security.

7 AN INTEGRATED INTERFACE OF USC

7.1 Introduction to an experimental interface of USC
An experimental interface of USC is shown in Fig. 3: (a)

Interface Menu (only part of the experiment menus listed). (b)
Interface, an integrated input method; which is used to create,
convert, manage, and retrieve contents by one’s intents.

The interface bases on precisely relation between Ucodes
and objects, one to one mapped.

Figure 3. An experimental Interface of USC (a) Interface Menu; (b) An
integrated input method

(a) Interface Menu

Creating contents based on author’s intents

Converting raw contents by semantic analysis

Convert raw contents by semantic analysis”, “Convert raw
polyphone contents by semantic analysis”

Convert raw content file by semantic analysis”:

The raw content refers to contents with ambiguities.

Retrieving contents based on user’s intents

Play selected objects”, “Object search”, “Text to speech”,
“Text to pinyin”, “Display word by different colors”

Editing menu

Object delete”, “Object copy”, “Object cut”, “Object paste”

File menu:

Open file”, “Save file as”

(b) An integrated Interface

The interface is an integrated input method, For example, in
(b), input five letters, “hongz”, then, three objects are matched
in the window: two word objects, each with two characters, and
an image object. By this interface, user can interact precisely and
semantically with the contents, such as audio, video, image
object, Chinese text objects, English text and etc. Anyone from
anywhere can access the contents, no matter want kind of
languages, want kind of objects.

This interface makes ambiguity no exist; and is machine and
human understandable. Author creates contents based on
author’s intents; user retrieves contents based on user’s intents.

Int'l Conf. Semantic Web and Web Services | SWWS'14 | 61

7.2 Create semantic contents based on author’s intents
7.2.1 Create video, audio and image object semantic

contents based on author’s intents
In Fig. 4 and Fig. 5, three video, an audio and an image

objects have been created into the contents.

Each object relates to one, and only one Ucode in the
contents; that is author’s intents map to contents one to one.

Each object is distinguishable; the object type embedded in
the Ucode; and object address relates to the Ucode. This makes
the

Figure 4. Three video objects inputted

Figure 5. An audio object and an image object inputted

semantics of contents understandable to machine, machine can
access the object directly; no semantic translation needed.

The Ucode also relates to human understandable languages.
For VSC, each video, audio and image relates to a notation string,
not understandable to machine.

7.2.2 Create phoneme semantics based on author’s
intents

In Fig. 6, Author inserts a Chinese three character word
object with polyphone character: into the contents.

The first character is a polyphone character, with two
different phoneme, and different meaning; there are two codes,
“BBE1” and “ADF0”, and each relates to one phoneme; here
“BBE1” is selected according to user’s intent as shown in Fig. 2.

Author’s intents also map to contents one to one.

Further, the three characters can be segmented as:
or ; here one Ucode maps to ; it is
impossible to be ; so the contents with author’s real
intents.

For VSC, the word relates to three characters, one to three
mapping, and not one to one mapping. The polyphone character
is only expressed by one Vcode: “ADF0”; one Vcode in contents
relates to two different intents, neither one to one mapping.

7.2.3 Create word segmentation semantics based on
author’s intents

The following example illustrates Chinese word semantics
inputting

In Fig. 7, as author inputs pinpang , two words:
, appear in the input window; if author

Figure 6. Insert a Chines three character word object with poly-phoneme
character: between two video objects: 3 , and

9 .

Figure 7. word segmentation semantics inputting based on author’s intents.

Selects , then the object is saved as a 4 byte
Ucode; if author selects , then the object
is saved as a 6 byte Ucode as shown in Fig. 2.

Here, Ucode is created by combining the character codes
according to user’s selection. Each word is an object, and relates
to one and only one Ucode in the contents, author’s intents map
contents one to one.

However, for VSC, multiple characters in contents relates to
one author’s intents; this is also multiple to one mapping.

7.3 Retrieve semantic contents by user’s intents matching
author’s intents

The main characteristics of USC Retrieving are:

Precisely Author’s intents: Author’s intents are expressed
precisely;

Precisely User’s intents: User’s intents are expressed
precisely.

Precisely matching: User’s intents matching author’s intents
precisely;

Directly and efficiently retrieving: because machine
understandable semantics, machine can extract the matched
contents directly and efficiently.

The content retrieving is based on user’s intent.

62 Int'l Conf. Semantic Web and Web Services | SWWS'14 |

As in Fig. 7, if user wants to search object: ;
is an Ucode, this can only be found in the first sentence of

the contents;, if user wants to search object: ;
is an Ucode, this can only be found in the second

sentence of the contents; if user wants to search object:
, this can only be found in the second sentence. User s

intents map to author s intents.

User’ retrieving can be in different way: mixed way, it
search’s all kinds of contents, all kinds of objects to match user’s
intents.

Retrieving in specified area, for example, retrieving from
audio objects to match user’s intents, from video object to match
user’s intents, from image object to match user’s intents, from
one-Chinese character word objects to match user’s intents, from
two-Chinese character word objects to match user’s intents;
from polyphone words to match user’s intents, from specified
languages to match user’s intents, and etc.

In order to be consistent with VSC, retrieving can also be
done in VSC retrieving manner.

Display word segmentation semantics to human as retrieving,
in Fig. 8, the word semantics is displayed in different colors.

The word segmentation semantics can also be expressed by
“Text to speech” as shown in Fig. 9.

There are polyphone word objects in Fig. 10; the word
phoneme semantics is distinguished by Pinyin.

Figure 8. The word segmentation semantics created by author’s intents is
displayed by different colors

Figure 9. The word segmentation semantics distinguished by text to speech
in different time gaps

The semantics of polyphone words can be retrieved correctly
by user’s intents. There are two in Fig. 10 and 11;

Figure 10. displaying the word phoneme semantics by Pinyin

Figure 11. retrieving by user’s intents (a) User input shan to search the
surname (b) the surname has been located by a vertical line

The first , pronounced dan , meaning
singular ; the second (the fourth character),

pronounced shan”, a surname. These are author’s intents.

User want to search the surname , by input shan ,
as showed in Fig. 11 (a); the result located at the fourth character
as showed in Fig. 11 (b); it is impossible to locate the first
character (dan), because it is a different objects. Here,
User’s intent matched user’s intent.

A real story about ambiguous word semantics once happened
years ago. Two persons, A and B signed a contract as following:

20 the first character is
ambiguous; there are two different pronunciations and two
different meaning. It is just the different semantics incurred a
lawsuit. In the court,

Person B based the first semantics: A “hasn’t paid ¥20000”
to B;

Person A based the second semantics: A “has paid ¥20000”
to B”.

The judger no way judged who is right.

Semantic analysis is the foundation of semantic computing
[3]; it involves extraction of context-independent aspects of a
sentence's meaning. However, even the judger can’t extract the
author’s real intents, how an agent can extract the author’s real
intents?

Because Vbit and Vcode have no way to express or store
author’s intents precisely, the real intents are often blurred, some
of the real intents can be extracted, but some can’t. Therefore,
the ability of semantic analysis can’t be overvalued.

However, with this interface, there is only one object of two
word objects in the contract; therefore, the meaning is precisely,
no ambiguity in the contract, with the real intents; therefore, this
kind of lawsuit would never happen again.

7.4 Retrieve any kinds of objects
Example 1, Retrieve one video object: “maohelaoshu10” as

shown in Fig. 12.

 Example 2, Retrieve image object as shown in Fig. 13.

Figure 12. (a) Search video: “cat and mouse 10”, (b) play the searched video

Figure 13. Image object searched, and displayed.

Int'l Conf. Semantic Web and Web Services | SWWS'14 | 63

7.5 Retrieve the objects selected
User can select the objects by user’s intent, then click “Play

selected objects”, then all selected objects plays one by one, for
video object, play the video; for audio object, play the audio; for
image, display the image; for text, read the text by text to speech.

8 THE ARCHITECTURE OF USC
The architecture of USC is shown in Fig. 14.

The contents consist of every kinds of objects which are
represented in different kinds of Ucodes. There exist contents
which are represented in Vcodes, which can be represented by
Ucodes in processing.

From precisely view, the contents can be divided into two
classes: one is in Ucodes with precisely author’s intents; another
is in Vcodes with author’s blurred intents, called as raw contents.

From security view, contents can be divided into two classes:
public contents and private contents.

The interface of USC consists of various Ucode programs,
by which author can create contents based on author’s intents;
user can retrieve contents based on user’s intents; manager can
manage contents. Anyone could be author, user or manager.

Because the Ucode programs are machine independent,
platform independent and network independent, and Ucodes are
space consistent and time consistent, contents can be anything,
can be processed in anywhere, created, modified, retrieved or
managed by anyone in anytime.

Managements of contents can be:

 Convert raw contents by semantic analysis

 Management of Interface tools

 Security management

…

9 CONCLUSION

USC can make computer scientists’ dream become true;
however, this paper is very elemental; this is just the beginning
of USC.

It is the right time to shift VSC to USC; with more scientists
taking part in, a bright future is in front of us.

Figure 14. The architecture of USC

Acknowledgments Thank Bin Wu, my wife, for her great contributions
and fully supporting.

REFERENCES

[1] J. Glenn Brookshear, Computer Science: An Overview (11th Edition),
Pearson Higher Education, 2012

[2] Tim Berners-Lee, http://www.techrepublic.com/article/an-introduction-
to-tim-berners-lees-semantic-web/

[3] IEEE Press Editorial Board, Lajos Hanzo, Phillip C.-Y., Sheu Heather Yu,
C. V. Ramamoorthy Arvind K. Joshi, Lotfi A. Zadeh, SEMANTIC
COMPUTING, IEEE Press, the Institute of Electrical and Electronics
Engineers, Inc. 2010

[4] Shengyuan Wu Methods and apparatuses of digital data processing,
PCTIB2013060369, 11, 2013

[5] Shengyuan Wu, Introduction to Multilevel Mark Coding Theory,
Proceedings of The 2007 International Conference on Foundations of
Computer Science (FCS'07), June 2007

[6] Aho, Alfred V. Lam, Monica S, Compilers Principles, Techniques and
Tools, New Delhi Pearson, 2011, P 1,1 ,1, 99, 522, 382-385

[7] William Stallings, Cryptography and Network Security principles and
Practice, Fifth Edition, Pearson Education, Inc., 2011

[8] Gilles van Assche, Quantum Cryptography and Secret-Key Distillation,
Cambridge University press, 2006

[9] Yin Hao, Han Yang, The principles and technology of quantum
communication, Electronic Industry Press, 2013

[10] Shengyuan Wu One-time Pad Cipher Based on Out-Key Distribution,
Proceedings of The 2014 International Conference on Wireless Networks
of Computer Science (ICW’14), 07, 2014

64 Int'l Conf. Semantic Web and Web Services | SWWS'14 |

